
32 eTech - ISSUE 10

Towards
Social
Hardware
Development
It is increasingly rare to find end-to-end design and manufacture taking place under one roof. This “vertical
disintegration” has led to a reconfiguration of the electronics industry value chain, creating a growing need
for collaboration across many specialist firms and coordination across countries. As the intense pressure to
specialise continues to drive outsourcing, now more than ever before, the development of hardware needs to
become a social act.

O
p

en
 S

ou
rc

e

In the past it was commonplace for design and
manufacture to take place within the confines of
a single organisation. This situation has changed
over time and has been driven by technological
progress and intensified competition, coupled with
the emergence of rapidly growing new markets
and reductions in trade barriers. This results in
the proliferation of firms that specialise in specific
areas of design, manufacture and assembly, and
shifting locations of supply and demand. These
significant changes to the value chain have brought
with them the challenge of collaboration across
organisational boundaries. Where there may be
multiple time zones, first languages, engineering
design tools and workflows in use, it is generally not
practical or cost effective to co-locate entire project
teams or mandate the use of common tools.

A Promising Pattern
The development of open source software provides
one of the most visible and compelling examples of
distributed cross-organisation collaboration. Shared
practices based on simple tools and lightweight
process have enabled low cost interaction and the
highly social production of technology. Projects
have ranged in size from the trivial and with a
single contributor, to those that are incredibly
complex and that have thousands. There is no single
programming language, development environment
or governance framework employed across open
source software projects, and those in use may
vary according to technical requirements, personal
tastes or the principles of a particular technical

community. However, they generally share the
same set of basic working practices. Projects have
a small proportion of “committers” who act as a
quality gate and decide which contributions will be
accepted, and may also delegate work and assume
responsibility for things such as overall architecture.
In open source software development, the source
code is made available to all, and this may be
modified by a developer providing a bug fix, or
extended in order to add a new feature. Where
new files have been created, a developer may
simply send these to a committer, and where
an existing file has been modified this can be
compared against the original to provide a file that
contains only the differences, and this “diff” or
“patch” file sent to the committer. Since the patch
contains only the changes, it is much smaller and
the committer can apply it to a copy of the original
file to recreate the new updated version. Version
Control Systems (VCS) are central to open source
software projects and enable them to track who
has made revisions to files, revert these where
necessary, and “tag” a release of all the files at a
particular point in development, e.g. with a version
number. It is these VCS repositories to which project
committers have write access and are thus able
to commit updates. The fundamental operation
of open source software projects is incredibly
simple, and the secret to their success lay in the
fact that they eschew needless complexity in
collaboration tools and practices. Instead choosing
to work with solutions that get the job done
with the minimum of fuss and least likelihood

By Andrew Back, Co-founder, SolderPad

eTech - ISSUE 10 33

of contention in a multi-contributor environment. The
many benefits that this simplicity affords is something
that enterprises are waking up to, as many now work to
replace complex and expensive proprietary collaboration
tools with the very same ones that are being used by open
source projects. Adopting similarly agile processes, the
principle difference is that software development is being
done in private rather than in public. Whilst there are clearly
differences between the development practices of software
and those used in the development of hardware such as
electronics, there is much valuable learning that can be
taken from the success of open source software projects;
from the remarkably lightweight processes used to support
collaboration, to the pragmatic and vanity free technology
that is used at the interface between collaborators.

New Challenges
Where collaboration is centred upon text such as
specifications, bills of materials, and HDL and software
source code, only the most simple tools are required in
order to make sense of, comment upon and edit files.
However, this represents only a small part of the hardware
design story and many inputs and outputs are pictorial in
form and require the use of special tools that are able to
work with specific proprietary file formats. These could

be, for example, mechanical drawings and 3D designs,
and schematic diagrams and printed circuit board layouts.
The tools required can be extremely expensive, and the
situation is made worse by the fact that so many different
file formats exist and a given tool will generally work with
a subset of these at best. The Electronic Data Interchange
Format (EDIF) is a standards-based attempt at producing a
common vendor-neutral format for storing netlists and
schematic diagrams. However, this has enjoyed very limited
success for various reasons that include loose specifications
which have resulted in many incompatible “flavours” of
EDIF existing across tools, and market forces that have
impeded uptake of the standard. Freely available tools such
as DesignSpark PCB [1] offer help in the way that teams
are able to install these at zero cost, and are thus able to
avoid having to make a financial investment in tools that may
only find use on one or a small number of projects. Further
challenges to open source-style collaboration exist in the
design tool file formats, as these are typically binary and
cannot be easily compared to produce a file containing only
the differences. Even where files are text-based they tend
to be rewritten entirely each time they are saved. A minor
design change may result in a file with completely
reordered contents, and a simple comparison with the
previous revision could suggest significant change when
this is not the case. It is likely that to achieve the levels
of agility, efficiency and scalability found in open source
software projects, the fundamental tools and processes
employed in support of collaborative hardware development
will have to be equally pragmatic and lightweight.

A SolderPad workshop at the DesignSpark-
sponsored Open Source Hardware Camp

Continued on page 34 >

Detail of a SolderPad Project Showing Pan/Zoom Interface

< Continued from page 33

34 eTech - ISSUE 10

Areas of commonality will exist and some of the tools and processes
used in open source software development may be repurposed, but
it is possible that new technology and process will also be required.

SolderPad
SolderPad [2] is an online service that attempts to bring some of
the benefi ts of open source software development to electronic
engineering. It provides a place to share, discover and collaborate
on electronic design, and the current release supports public
hosting and is aimed squarely at open source hardware projects.
The Git VCS technology is at the core of the platform and is used
to manage both project fi les and meta-data, with support planned
for the ability to also manage repository contents via the Web API.
The initial release of the site works with simple design exports of
images and JSON formatted bills of materials, and thus sidesteps
getting into the complexity of structurally understanding the various
native design tool fi le formats.
Designs are presented as a datasheet with:
• schematic diagrams and PCB layouts that are
navigable via a pan/zoom interface;
• a bill of materials that allows search and pivot by part;
• explicit licensing and copyright information;
• a text description;
• tagging.

Conclusion
The electronics industry is presented with a signifi cant opportunity
to increase agility, productivity and the ability to scale in collaborative
projects, through the adoption of lightweight process and pragmatic
technology at the interface between partners. It may be that clues as to
how this can be achieved in practice are to be found in the operation of
open source software projects and, more recently, the emergent open
source hardware movement. SolderPad is an example of a service that
embraces open source techniques in support of achieving such goals,
but this is only the beginning of the journey and there will be others.

[1] http://www.designspark.com/pcb
[2] http://solderpad.com

FIND IT:
For more information visit:
www.rs-components.com/electronics

The Git Distributed Version Control System
Git is The Version Control System that is used to
support the development of Linux and that shares the
same creator, Linus Torvalds. It puts an emphasis on
performance and safeguarding against corruption, and
this is not surprising when you consider that the Linux
kernel comprises over 11 million lines of code spread
across tens of thousands of fi les, and with thousands of
contributors submitting updates. The Git VCS is one of
an increasingly popular new breed that are distributed
in nature. Which is to say that every developer has a
copy of the entire repository and the development
history, and it is this local copy or “clone” to which they
commit their changes. Should they have write access
to a project’s master repository hosted on a server
somewhere—i.e. be a project committer—they are then
able to periodically “push” to this any changes that were
committed locally. In the event that they do not have
this level of access they may submit their changes to
someone who does. Git provides enhanced support for
many powerful development practices, such as providing
a very low cost means of creating a “branch” where
parallel development may safely proceed in a non-linear
fashion, e.g. to test something out. With support for
later merging this branch back into the development
“trunk” if deemed appropriate, or else simply deleting
it, many branches may exist at any one point in time
and switching between them is trivial. Other less visible
but equally important features include the cryptographic
authentication of history, whereby it is made impossible
to change old revisions of fi les and accountability is
assured. One of the few downsides of Git is that the
learning curve can be a little steep if you do not have
much experience of such systems. However, crossing
this hurdle is an investment well worth making as it will
more often than not pay signifi cant dividends in terms of
productivity gains. What started out as a tool to support
development of the Linux kernel is now incredibly
popular, and in April 2011 the project hosting provider
GitHub reported that they alone were hosting over
1,000,000 projects and that this fi gure was growing
by 4,500 each day. This does not include other
service providers, and individuals, projects and
companies that host their own Git repositories.
To fi nd out more about Git see: http://git-scm.com/

Detail of a SolderPad Project Showing Commit Log

Share your views...
www.designspark.com/eTech

